Murine leukemia virus regulates alternative splicing through sequences upstream of the 5' splice site.

نویسندگان

  • Janine Kraunus
  • Daniela Zychlinski
  • Tilman Heise
  • Melanie Galla
  • Jens Bohne
  • Christopher Baum
چکیده

Alternative splicing of the primary transcript plays a key role in retroviral gene expression. In contrast to all known mechanisms that mediate alternative splicing in retroviruses, we found that in murine leukemia virus, distinct elements located upstream of the 5' splice site either inhibited or activated splicing of the genomic RNA. Detailed analysis of the first untranslated exon showed that the primer binding site (PBS) activates splicing, whereas flanking sequences either downstream or upstream of the PBS are inhibitory. This new function of the PBS was independent of its orientation and primer binding but associated with a particular destabilizing role in a proposed secondary structure. On the contrary, all sequences surrounding the PBS that are involved in stem formation of the first exon were found to suppress splicing. Targeted mutations that destabilized the central stem and compensatory mutations of the counter strand clearly validated the concept that murine leukemia virus attenuates its 5' splice site by forming an inhibitory stem-loop in its first exon. Importantly, this mode of splice regulation was conserved in a complete proviral clone. Some of the mutants that increase splicing revealed an opposite effect on translation, implying that the first exon also regulates this process. Together, these findings suggest that sequences upstream of the 5' splice site play an important role in splice regulation of simple retroviruses, directly or indirectly attenuating the efficiency of splicing.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Limited complementarity between U1 snRNA and a retroviral 5′ splice site permits its attenuation via RNA secondary structure

Multiple types of regulation are used by cells and viruses to control alternative splicing. In murine leukemia virus, accessibility of the 5' splice site (ss) is regulated by an upstream region, which can fold into a complex RNA stem-loop structure. The underlying sequence of the structure itself is negligible, since most of it could be functionally replaced by a simple heterologous RNA stem-lo...

متن کامل

Competing upstream 5' splice sites enhance the rate of proximal splicing.

Alternative 5' splice site selection is one of the major pathways resulting in mRNA diversification. Regulation of this type of alternative splicing depends on the presence of regulatory elements that activate or repress the use of competing splice sites, usually leading to the preferential use of the proximal splice site. However, the mechanisms involved in proximal splice site selection and t...

متن کامل

Alternative splicing of SV40 early pre-mRNA in vitro.

Simian virus 40 (SV40) early pre-mRNA is spliced using either of two alternative 5' splice sites and a common 3' splice site to produce two mRNAs that encode the T and t antigens. We have studied alternative splicing of SV40 early pre-mRNA in vitro using a HeLa cell nuclear extract. Synthetic SV40 early transcripts are processed to T and t antigen mRNAs in vitro. As in SV40-infected cells in vi...

متن کامل

A novel subgenomic murine leukemia virus RNA transcript results from alternative splicing.

Here we show the existence of a novel subgenomic 4.4-kb RNA in cells infected with the prototypic replication-competent Friend or Moloney murine leukemia viruses (MuLV). This RNA derives by splicing from an alternative donor site (SD') within the capsid-coding region to the canonical envelope splice acceptor site. The position and the sequence of SD' was highly conserved among mammalian type C ...

متن کامل

An ancient mechanism for splicing control: U11 snRNP as an activator of alternative splicing.

Alternative pre-mRNA splicing is typically regulated by specific protein factors that recognize unique sequence elements in pre-mRNA and affect, directly or indirectly, nearby splice site usage. We show that 5' splice site sequences (5'ss) of U12-type introns, when repeated in tandem, form a U11 snRNP-binding splicing enhancer, USSE. Binding of U11 to the USSE regulates alternative splicing of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 281 49  شماره 

صفحات  -

تاریخ انتشار 2006